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ABSTRACT 

In this work a new highly compact solar thermal heat pump system for space heating and 

domestic hot water preparation will be presented in detail. It was developed within the 

European project “MacSheep”. The aim of the project is to build four different solar heat 

pump systems, which achieve 25 % electric energy savings compared to the state of the art 

solar heat pump heating systems, while still being cost-competitive. Within the MacSheep 

project, four different developing groups developed different system concepts to reach this 

project goal. The system, which is presented in this paper, was developed and designed by the 

following partners; Energie Solaire SA (industrial partner), Institute of Thermal Engineering 

(research partner) and the Institute for Solar Technology SPF (research partner). 

A key component of the system is a novel brine-to-water heat pump prototype with a speed 

controlled compressor, an economizer refrigerant cycle and a desuperheater. The heat pump 

was optimized for low source temperatures, in order to be compatible with concepts that use 

only unglazed selective collectors as heat source. A key element was the integration of heat 

pump, storage, and hydraulic connections into one compact system design. Further 

developments are: a combi-storage, which is optimized for heat pump use, and selective 

unglazed collectors with a new selective coating. The compact designed heat storage, heat 

pump and hydraulic solution is placed under one high performing insulating shell built of 

vacuum insulation panels. 

The annual simulation results, which were validated with component tests in the lab, show 

very promising results for the whole system. The electric savings compared with the state of 

the art system are expected around 28 % and the improvement of the seasonal performance 

factor (SPF) of the whole system is around + 40 %. These values will be compared with a 

whole system hardware in the loop benchmark test in autumn 2015. 
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INTRODUCTION 

Within the European project “MacSheep” four developing groups, made up of different 

research institutes and private companies, have developed each a solar heat pump system for 

space heating and domestic hot water preparation. The aim was to achieve 25 % electric 

energy savings, compared to what was the state of the art for solar and heat pump systems at 

the beginning of the project in 2012. At the same time, the aim was to achieve this without an 

increase in system cost. In this paper we will present the developed system of one of the four 

groups, which is represented by the authors of this work. 
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The newly designed system consists of the following improved or newly developed 

components: 

- variable speed heat pump (HP) with economizer and desuperheater cycle, developed 

by IWT, 

- unglazed selective solar absorbers with new coating that leads to significant cost 

savings (heat source for the heat pump), developed by Energie Solaire SA, 

- thermal combi-storage optimized for heat pump use, featuring enhanced stratification 

even with high inlet mass flows, developed by SPF, 

- high efficiency storage insulation built with vacuum insulation panels (VIP), by SPF, 

- hydraulics and control solution that allows the heat pump to serve directly space 

heating without using the storage for most of the year – compatible with all kinds of 

heat distribution systems, developed jointly by SPF and IWT. 

Unique on this system is that all hydraulic components such as pumps, valves, heat 

exchangers and the heat pump itself are under the same VIP insulation as the storage unit. 

Thus, a very compact system can be built with a high degree of pre-fabrication, resulting in 

much faster and less fault-prone installation in the field. Figure 1 shows the design concept of 

the system. 

  

Figure 1: Design of the insulation of the system shown without hydraulic components (left) 

and with components (right). 

Figure 2 shows the square view diagram [1] of the system concept. The main functionality of 

the system can be described as follows: The heat source of the heat pump - in this particular 

case - are selective unglazed collectors. If the collector temperature level is high enough and 

the heat pump is not running, the collectors can load the storage directly. However, it is 

possible to modify the heat pump source by minor hydraulic changes to a ground source heat 

pump system, PVT, or ice storage system, alternatively. The heat pump cycle is equipped 

with a speed controlled compressor and with an additional suction port for vapour injection 

via an economizer cycle with a plate heat exchanger. A Desuperheater is used to transfer heat 

from the superheated refrigerant vapor to water for DHW preparation at relatively high 

temperatures as a by-product of space heating operation. The water side of the condenser is 

connected to the space heating loop. This is mainly charged directly by the heat pump, 

without using the storage. Also if enough solar energy is stored in the combi-storage, the 
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space heating can be loaded directly by the tank. For the hot water preparation a domestic hot 

water module is used. More details on control and the system concept can be found in [2]. 

 

 
Figure 2: Square view diagram of the concept developed by ESSA, IWT and SPF [1]. 

METHOD 

General 

Within the first and second phase of the MacSheep project in the year 2012, breakthroughs for 

materials, components and control that lead to higher energetic performance and/or lower cost 

of the system were analysed and selected. The effect of potential breakthroughs on the 

energetic performance was determined by annual simulations. In phase three of the project 

(2013-2014) the promising breakthroughs were built into real components and tested in the 

laboratories. The test results were used to validate and calibrate the component models for the 

annual simulation. In phase four of the project (2015) a whole system test method will be 

used to test the complete system and confirm the energetic performance and functionality of 

the overall system. All performance results are compared with a state of the art solar – heat 

pump system which is available on the market and which has been tested with the whole 

system test method in the first year of the project [3]. 

Simulation 

The annual whole system simulation was done with TRNSYS 17. The following components 

of the system were built and tested in the laboratory separately: unglazed selective collector, 

heat pump, combi-storage and the domestic hot water module. With the results from the 

component testing the simulation was validated and calibrated to get realistic results for the 

whole system. Table 1 shows the main components and their key figures. 

Two different climates and two different buildings have been simulated and compared with 

the reference system. The building heat load (SH) and the domestic hot water demand (DHW) 

were based on IEA Task44/Annex38 [8] for a single family house (SFH) with 45 kWh/(m2a) 
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and a retrofit house with 100 kWh/(m2a). Details about the boundary conditions and the 

reference system can be found in [2]. 

 

Component Size Type Parameters TRNSYS 

Model 

Collector 26 m2 

Unglazed 

Selective 

Collector 

η0 = 0.954 [-] 

b0 = 0.01 [s/m] 

b1 = 11.96 [W/(m2K)] 

b2 = 2.904 [W/(m2K2)] 

α = 0.917 [-] 

ε = 0.26 [-] 

Type 202 

[4] 

Heat Pump 

Heating Power 

4.9 kW / B0W35 

@ 3600 rpm 

Variable 

Speed, 

Economizer, 

Desuperheater 

COP 

4.0 / B0W35 

Type 877 

[5] 

Storage 

Tank 

Volume 

750 l 
Combi Storage 

Heat Losses 

3.91 kWh/day 

(Whole Store at 60°C, not 

including all hydraulics) 

Type 1924 

[6] 

Solar Heat 

Exchanger 
1.22 m2 

External Flat 

Plate 

UA-Value 

3135 W/K 
Type 5b 

DHW Heat 

Exchanger 
0.95 m2 

External Flat 

Plate 

UA-Value 

3914 W/K 

Type 805 

[7] 

Table 1: Key components summarized with their key figures. 

Testing 

A new harmonized dynamic system test method for heating systems was developed and will 

be applied by the institutes SERC and SP from Sweden, INES from France and SPF from 

Switzerland. The new method combines the advantages of the different methods that existed 

before the MacSheep project. The new method is a benchmark test, which means that the load 

for space heating and domestic hot water preparation is identical for all tested systems, and 

that the result is representative for the performance of the system over a whole year. Thus, no 

modelling and simulation of the tested system is needed in order to obtain the benchmark 

results for a yearly cycle. This is a significant step forward, since the method is now also 

applicable to products for which simulation models are not available yet. More information 

and details about the dynamic system test method can be found in [3]. The new developed 

heat pump was tested under steady state conditions, whereby 58 measuring points were 

recorded. Additionally to the steady state measurements, dynamic tests with varying operating 

conditions were carried out. These results were used to validate and parametrize the 

simulation model of the heat pump. 

RESULTS 

Heat Pump 

Table 2 shows the results of the steady state heat pump measurements for different realistic 

operating conditions. The results show that with very low source temperatures (Tbrine,in) of 

−15 °C and condenser water outlet temperature of 34 °C (Tcond,out) the heat pump still achieves 

a COP of 2.8. Even at higher condenser water outlet temperatures (48 °C) for DHW 
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preparation a COP of 2.3 can be reached. These remarkable results can be explained with the 

implementation of the economizer cycle. However, for the most time of the year much higher 

brine temperatures can be expected, leading to higher COP’s between 4.4 and 5.9. Dynamic 

test results can be found in [9].  

 

ncomp Tbrine,in Tcond,in Tcond,out TDES,out Qcond,sh QDES,dhw Pel COP 

[rpm] [°C] [°C] [°C] [°C] [kW] [kW] [kW] [-] 

4800 a) -15 45 48.1 92 3.0 1.9 2.20 2.3 

5400 b) -15 30 34 80 3.9 1.2 1.85 2.8 

3000 b) 2 23 28 58 3.9 0.5 0.88 5.0 

2400 b) 2 30 33 62 3.0 0.6 0.81 4.4 

2400 b) 15 30 34 57 3.9 0.6 0.77 5.9 

Table 2: Results of the steady state heat pump measurements for different operating points.  

a) domestic hot water preparation, b) space heating mode with parallel preparation of 

domestic hot water (desuperheater) 

Whole System Simulation 

Table 3 summarizes the results from the annual system simulations with validated parameters 

of the components. The difference to the reference system is shown in brackets. The key 

figures here are the seasonal performance factor (SPF) of the whole system, the electricity use 

(Wel,SHP+) including the electricity demand of controller, valves and pumps, according to the 

definitions of the IEA SHC Task 44 [8]. Also the design flow temperature (TFl) and the design 

return temperature (TRt) of the heating distribution are shown. The results show for both 

climates and heat loads a significant improvement. A further interesting result is that the heat 

pump in the annual simulation for Zurich SFH45 shows only 21 activations for direct DHW 

charging (the rest is covered by solar and the desuperheater), which leads to an annual heat 

pump SPF of 4.03. 

 

 Zurich 

SFH45 

Zurich 

SFH100 

Carcassonne 

SFH45 

Carcassonne 

SFH100 

SPFSHP+ 

[-] 
4.48 (+40.5 %) 3.21 (+32.0 %) 5.16 (+34 %) 4.01 (+36.9 %) 

Wel,SHP+ 

[MWh] 
2.52 (-28.8 %) 6.28 (-24.7 %) 1.15 (-30.6 %) 2.82 (-30.5 %) 

TFl / TRt 

[°C] 
35 / 30 55 / 45 35 / 30 55 / 45 

Table 3: Key performance figures for the optimized system, with difference compared to 

reference system given in brackets (the new system is optimized and designed for Zurich 

SFH45). 

CONCLUSION 

The obtained results (HP) from the daily tests (dynamic) and static tests show a satisfying 

performance of the heat pump prototype and its control. Also the vacuum insulation shell, the 

storage stratification, the new absorber development, and the hydraulic concept show very 

promising results. All these components combined and simulated in an annual simulation 
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show that the goals of the project (-25 % electricity demand) can be achieved or even 

exceeded. Thanks to the hydraulic concept in combination with the direct solar energy 

contribution to the storage and the desuperheater loop, exclusive DHW charging by the heat 

pump can be reduced significantly to 21 times per year, compared to common heat pump 

systems which have 1 – 2 charging cycles per day. This leads to a very good annual HP SPF 

because the heat pump does not have to work with high condensation temperatures. The heat 

losses of the storage system seem high with 3.91 kWh/day, but it has to be considered that the 

outer insulation surface area is almost doubled compared to common storages, and that this 

includes at the same time the heat losses of all component of the heat pump, solar pump 

group, and hydraulics. 

While this paper is written the MacSheep system is prepared for the whole system test in the 

SPF test bench. The final results are expected in autumn 2015 and will be published by end of 

the year 2015.  
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